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The overlap matrix of symmetric molecules is diagonalized for arbitrary 
orbitals as far as this is possible by group theoretical methods. The remaining 
invariant matrix elements are expressed in coordinate and numeration inde- 
pendent way by "physical" orbital factors and purely geometric factors arising 
from group algebra only. 
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1. Introduction 

In this paper we want to diagonalize the overlap matrix of a molecule or complex 
AraBiC v. - �9 with symmetry group G for an arbitrary set of orbitals ~o,~m(r-A~) as 
far as this is possible by group theoretical methods. We write the orbitals in 
Dirac's notation: 

cpn~m(r-- Ai)= (r-- Ai [ nlm)= (r l Ainlm) (1) 

The vector A i indicates the position of the i ' th atom of the symmetrically equivalent 
set A. Symmetrically inequivalent sets consisting of equal atoms will be marked 
differently. 

The treatment of the overlap matrix is not only an end in itself, but also a prepara- 
tion for the diagonalization of other molecular matrices (energy, vibrational force 
constants etc.). Thus Sect. 2 will apply to these other matrices too. But Sect. 3 takes 
into account the special properties of the overlap matrix. 

2. Diagonalization 

The diagonalization will be performed by the SALC coefficients defined in [1, 2], 
in the following cited as I and II. The definitions and notations of these papers will 

0040-5744/78/0049/0199/$02.40 



200 G. Fieck 

be taken over. According to Eqs. (20) and (21) of II we have the following formula 
for the SALC's built up from the atomic orbitals (1) : 

I(A~c~, nlfld)~cp) = ~ M(7~p, A i~ ,  (fld)lm). ]Ainlm), (2) 
im 

where the SALC coefficient is given by: 

M(ycp, Air,z, (fld)lm)= ~. (z~q, dr j ycp)(A i I A~z~q)(lml lfldr) (3) 
qr 

In (3) we have the following coefficients: (z~q, dr [ 7cp) is the Clebsch-Gordan 
coefficient reducing the product e •  to 7c, (lm[lfidr) the transformation 
coefficient from the /m-basis to the s.a. lfl&-basis, and (Ai lA~q)  a standard 
coefficient, according to Eq. (7) of II a suitable linear combination of s.a. spherical 
harmonics. 

We repeat the meaning of (2): I(A~, nlfld)Tcp) are SALC orbitals of symmetry 
species c (y multiplicity index, component p) resulting from atomic orbitals with 
the quantum numbers n, l, m located at atomic centers of set A. The additional 
quantum numbers fld and ctz~ are inserted by the reduction of the reducible repre- 
sentations @t ~ d and 0 "A --+ ~ (•  and e multiplicity indices). The original overlap 
matrix (AinlmIBkn'l'rn') is in terms of the SALC orbitals already diagonalized 
as far as this is possible from symmetry considerations: 

( (A~ ,  nlfld)Tcp l (B~'a/, n'l'fl'b')yl'c'p')= 
i 

5(c, c')fi(p, p')((A~a~, nlflb)ycp l (Be'd, n'l'fi'd')y'cp) (4) 

The remaining diagonalization in the indices Ac~c~, nl~d, ~; will depend on the special 
atomic orbitals (for instance STO or GTO), on the special distances between the 
atoms of set A and set B etc. The symmetry invariant matrix elements in (4) are 
given by: 

((A~z~, nlfld)Tcp l (B~'d, n'l'fl'd')7'cp)= 

M(V,p, A i~ ,  (fld)lm)*.M(7',p, Bjc(d, (fi'd')l'm')(Ainlm l Bjn'l'm') (5) 
im jm" 

This is the starting point of further considerations but not of direct, practical use, 
when the coefficients M have been calculated; because one needs all original 
matrix elements to calculate the fewer invariant elements. For this purpose it is 
more useful to solve (5) with the aid of the orthogonality relation (23) of II : 

(Ainlm l BjnTm')= Z Z ~ M(Tcp, Aic~z~, (fid)lrn) 
ctc~fl ~Ta' ~ ' f l '  ~ 'y 'cp 

-M(7'cp, Bj~'c~', (fl'~')l'm')* ( (A~e, nlflg)7~p [ ( B~'a/, n'l' ff ~')y'cp) (6) 

In (6) the original overlap matrix is expressed by its symmetry invariants. When 
there are x invariants, it will be enough to calculate x matrix elements. Taking x 
relevant equations from (6) one can calculate the invariants and the rest of the 
matrix elements will follow. This brings out the dependency of matrix elements 
handled in [-3] for the special case of force constants. In order to express the 
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invariants in coordinate and numeration independent terms one must take into 
account more specific properties of the matrix under consideration, as will be done 
in the next section. This will make obsolete the explicit knowledge of the co- 
efficients M and all other coordinate dependent coefficients therein. 

Because we shall have to perform Racah algebraic calculations, it is suitable to 
replace the Clebsch-Gordan coefficients in (3) by the more symmetric vector 
coupling coefficients Eq. (57) of II: 

(q+ ~+r p/~'] (Ai I Acc~q)(lm I lfl~r) (7) M(Tcp, Ai~,  (fl6)lm)=dim c 1/2 ~ V~ 

The meaning of ~ + and other Racah algebraic conventions are explained in the 
appendix of II on nomenclature. 

3. Coordinate Independent Expressions 

In the case of the overlap matrix the specific properties follow from the two-center 
integrals. These only depend on the distance vector .4 i -  B k between the centers. 
Because of the completeness of the spherical harmonics and the translation 
invariance of the integrals we have the form: 

(Ainlm I BknTm') 

= E Y Ltr, rAi--Bkl) <A,-Sk I LM> (8) 
L=0 M = - L  m m' 

Integral formulae with the structure of (8) have been given in [-4] and [5] for 
special orbital types. [-6] contains a general proof and a recursive differential 
equation for the invariants ~. From arbitrary formulae the invariants can be 
calculated, if one solves (8) for n and chooses Ai=O and Bk=(0, 0, S)=S. This 
yields : 

(0 m ;+) L l (Onlm I SnTm) (9) n(nn', Lll', S)=(4n/(2L + 1)) 1/2 

As discussed at some length in II there are discrete sets of symmetry equivalent 
edge vectors between the centers A~ and B k, which we term S~ etc. Because the 
triangles -ABS  spanned by the vectors - A~, B k, S, are all equivalent, we can use 
the triangular coefficients Eq. (37) of II to give (8) the following form: 

(Ainlm [ BknTm') 

- (S. ILM ) (10) - ~zs n(nn', Lll', S) MnZ Z(-ABS) 1/2z ikn ] m 

Inserting this into (5) we can express the invariants by the physical factor n and a 
geometrical factor G: 

< (A~ ,  nlfi#)Tep [ (B~%', n'l'fl'#')~'~p) 

= ~, n(nn', Lll', S).G(A~Jfl~, B~'~'l'fl'~', 77'c, L, S) ( l l )  
LS 
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with 

G(Ac~lfi~, Bcg~'l'fi'd', 77c', L, S)=Z(-ABS) 1/2 E E M(TcP, Aic~z~, (fl~)Im)* 
imk m'Mn 

�9 m(7 cp, Bke'd, (fl'6')l'm')z \ ikn el m m 

(11) is our central equation and the remaining task is to reshape (12) in order to 
express G by group algebraic invariants. We use (7) and express the 3jm-symbol in 
the s.a. basis: 

m m ~ 

E E E  
uds gfr ~'~'r'e 

<LMIL~ds> (Ira Ilfi~r)<l'm'lrB'~'r'>* (13) 

�9 V~ r r' Is~ # d  + fi~ + fl'~' 

Inserting this and (7) into (12) yields: 

G(AeJfl& Be'all'[I'd', 77% L, S) 

= Z ( - A B S )  1/2 dime Z Z 
err'q q'ikn ~t~s 

L 1 + l' t 
Is~ l ~  + fl~+ fl,~, 

.V~ r r ' V* r ~" q' r' 

( -  ABS) 
�9 (A~z~q[Ai)(B k ]Bc(~'q')(S, [Ll~dS)Z \ ikn J 

We sum over p, cancel dim ~, and express the three V-coefficients by one V and a 
Racah coefficient: 

G(A~cdfl& Bc(~'l'ff 6', 77% L, S) 

=Z(_ABS)I /2  ~ ~ is~( L + I + 1') 
~qq,ik. ~ ,  ~ d+ ~+ [~'~' 0 ~ ( ~ + )  

ZYJ ,~Z/ + 

Finally we expand (S, I L#ds) in standard functions, cf. Eq. (12) of II: 

<s. I L~d~> = S c(S~d, L~)(S. I S~d~) (14) 

and now collect the triangular sum of standard functions in a polyhedral isoscalar 
factor defined in Eq. (42) of II: 



Diagonalization of the Overlap Matrix 203 

G(Ac~lfid, Bc~%'l'fi'd', 77'c, L, S ) = Z ( - A B S )  ~/2 

. O ,(~de+ ) E Z I  G L + 1 + l' d + 
,a~ ~ p~+ rid + fl'd' W ~'+ 

�9 PIs, ,B, c(S6d, L#) 
c~a~ + 3d ~ ~ / 

With this equation we have solved our main problem. The invariants of the 
overlap matrix are expressed by physical factors and the Racah algebraic factors 
Is, W, PIs, and c. Eq. (15) looks rather complicated, because we have taken into 
account all multiplicities which one can think of. They will seldom occur all 
together. If the symmetry group is simply reducible (as for instance Oh, Td, D~h ), 
the indices 7, [ ,  e, r/are to be skipped. For low coordination number the same is 
true for ~ and c( and perhaps 6, for low angular momentum of the orbitals for fl 
and fl'. Since L = 2 is already reached for p orbitals,/~ will mostly be needed. 

4. Special Cases and Sum Rules 

In this section we mark the totally symmetric representation A(~g) by o. A simple 
case of special interest occurs, if one equivalent set B contains the central atom 
only (if there is any). We then have B = O, S = A, and since o -~ = l only, d =  o. It 
further follows q = e '=  7' = 1, d' = c and d = ~. Because of 

+ ) - i/20~ W {' ~ o~d d' ~ , ~ = ( d i m d " d i m ~ )  (a,+ d+ d')5(7, e) 

and of Eq. (45) of II the geometrical factor reduces to: 

G(Ac~lfl6, 0ol'fi'd', 7d', L, A) 

( L + I + I ' )  
= ~ ls~ (dim d')-  1/2 ~ + ~d + y~, . c ( A ~ ,  L~) 

and Eq. (11) becomes : 

(16) 

= ~ ~(nn', Lll', A).G(Aa~Ifid, 0ol'fl'd', J ' ,  L, A) (17) 
r 

A similar simplification results, if at one atomic set B there are s-orbitals. It 
follows: l '=0 ,  d '=~,  and further L = l  +, d = d  +, e = d ,  [ = e = l ,  and t/=y. 
Because of  

(, Is = [dim d/(2l+ 1)]l/2fi(#, fl) 
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the geometrical factor is in this case: 

G(Ac~lfld, Bot'dO~, 7a., l, S) 

k(2l+ 1) dim ~ J ~ +  ~d ~'~' 

For the diagonal elements of (11) exist certain sum rules, which result from sum 
rules of the geometrical factors. The first one follows from a sum of Racah co- 
efficients, 

dim c. O,(~dc+)W ~ = (dim a,. dim #)~/23(d, ~)3(e, 1)6(t/, I) (19) 

which is a generalization of the rule (2.10) in [7] for the 6j-symbols. It follows from 
the orthogonality relation of the Racah coefficients [8], if one puts one representa- 
tion equal to ~. From (19) results: 

dim c. G(Ac~l[~& Ae'z~l~'~, 77~, L, S) = 
y c  

Because of the sum rule 

( L + l + l )  
(dim g)~/2Is = (2/+ 1)a/Z6(L, 0)6(#, 1) 

~ ~ / ~ + / ~  

(20) 

and the analogous one Eq. (48) of II for the polyhedral isoscalars we get subse- 
quently: 

dim c. G(Aecfl[l& Ac~'J[3A 77c, L, S )=  

6(L, 0)[Z(-ASA)Z(S)(2I+  1)dim c~/4~]l/2PIs{ - A  / S A I \ 
2 / 

and further: 

Z 

(2~) 

dim e-G(AeJ3& Ac~l~,  ~7c, L, S)=  6(L, O)3(S, O)Z(A)[(2/+ 1)/4re] ~/2 

(22) 

The sum rules (20), (21), and (22) yield analogous ones for the invariants (11), the 
last one being: 

dim c((A~a~, nl~)Tcp I (A~a., nl~),/cp) = Z(A)~(nn, Oll, 0) [(2/+ 1)/4~] 1/2 
~ (23) 
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In semiempirical calculations it may be of interest to regard the physical factors 
as fitting parameters and to have an inversion of formula (11). This is possible by 
the following orthogonality relation of the geometrical factors: 

~, 2 ~ dim e. G(Ac~cdfld, Bc~'a/l'fi'd', 77'c, L, S)* 
~,~ ~p,~, ~:,,~, (24) 

�9 G(Ac~a, lfld, Bo~'~Tfl'd', 77%, L, S ' )=  6(L, L')c~(S, S ' )Z( -ABS) /4~z  

Before giving the proof we look for the consequences. We get from (11): 

rc(nn', L//', S) = [4~ /Z( -  ABS)] .  ~, ~ Z dim 
~,~,~ p~p,~, ~ , ~ ,  (25) 

�9 G(Ac~lfld, Bc(dl'fi'd', ~/7'c, L, S)*((Ac~,  nlfi{)7ep[(Bc(cd, nTfl'd')7%p) 

Since ~z(nn', Lll', S)  represents the typical overlap over a distance S, Eq. (25) 
brings out the relations enforced upon the invariants, if in a next neighbor 
approximation some of the ~z are set equal to zero. 

The proof of (24) is as follows. One substitutes (l 5) into the left side of (24) and 
then uses successively the orthogonality relations of the Racah coefficients, of the 
isoscalars [8], and of the polyhedral isoscalars Eq. (49) of II. This yields : 

(2L+ 1)- tZ(" ABS)Z(S)- '3(L, L),5(S, S) Z dim dlc(Sfid, Lp)} 2 (26) 

Starting now with the addition theorem of the spherical harmonics [9] we calculate: 

(2L+ 1)/4re= Z [(S~lLrn)[ 2:  ~ I(S~[Lm)IZ/z(s): Z I(S~ILI~p)[2/Z(S), 
m r m  r # ~ p  

and further with Eqs. (12) and (lO) of II" 

(2L+ 1)/47r = ~ dim a~. ]c(Sc~, LI~)IZ/Z(S) (27) 

Inserting this into (26) finally yields the right hand side of (24). By the way (27) 
can serve as a check for the coefficients c(Se, z, L#) after calculation by Eq. (13) ofII. 

5. Example 

As an example we study the tetrahedron of molecules like P4 or generally AB 4. 
Because of the isomorphism between the groups T a and 0 we can take over the 
V and W coefficients [ 10]. Since in the group chain O h ~ T a no representation splits 
up, we also can take over the isoscalars from the chain 0(3) ~ O h : 

j kl'~0(3) ~ { j  k l )0(3)  
IS z;~ ~ , c ) r  d = .is ~.d~' ~' s  h (2S) 

provided that under O h --+ T e : ~' --~ ~, d' --+ d, ~' ---, c. The isoscalars of O h are 
given in [11]. 

Thereby the task remains to set up the following lists: The position vectors of the 
four atoms were already given in I. The edge vectors between the atoms are 
defined by S,. k = R i - R k . We therefore have: 
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Table 1. C o m p o n e n t s  of  the vectors R~ and Sek 

G. Fieck 

gl R~ R3 R~ s,: sl,  sl~ s21 &~ s:~ &l s~2 &~ &, &2 &~ 

X 1 1 - 1  - 1  0 2 2 0 2 2 - 2  - 2  0 - 2  - 2  0 
Y 1 - I  - 1  1 2 2 0 - 2  0 - 2  - 2  0 - 2  0 2 2 
Z 1 - 1  1 - 1  2 0 2 - 2  - 2  0 0 2 2 - 2  0 - 2  

The standard functions over N were likewise given in I. We repeat them for 
convenience. In order to find out the irreducible representations induced by set 
we have to calculate the characters of crs in the manner lined out in I. This yields: 
aS(E) = 12, os(8c3)= 0, o ' S ( 3 c 2 ) =  0, as(6s~)= 0, as(6aa)= 2. From this follows in 
the usual way: o s=  A 1 + E +  T~ + 2T 2 . For the calculations according to Eqs. (7) 
and (8) of II we need a set of s.a. functions. We choose: ( r  I A10) = 1, ( r  I E l )  = 
3 z 2 - -  r e ,  ( r  ] E Z  ) =  x 2  - y 2, ( r  I T 1 1 )  = x ( y 2 -  z 2 ) ,  ( r  [ V 1 2  ) = y ( z 2 -  x 2 ) ,  ( r  I T 1 3 ) =  

z ( x 2 - - y 2 ) ,  ( r l  e V z x ) - - Y Z ,  ( r  t ~  ( r  ] o c r z z ) = x y ,  ( r  I f l V a x ) = x ,  

( r  { f i T 2 Y  ) = y ,  ( r { f i T 2 z )  = z. T h e  s t a n d a r d  f u n c t i o n s  a r e :  

Table 2. Standard functions (R~ I Rc~p) over set 

g l  R2 R3 R4 

(R~ I RAIO) 1/2 1/2 1/2 1/2 
(R, I RT2~) 1/2 1/2 - 1/2 - 1/2 
(R, I RT2y )  1/2 -- 1/2 -- 1/2 1/2 
(R, I RT:~) 1/2 - 1 / 2  1/2 - l/2 

Table 3. Standard fimctions (S~k I Set~p) over set 5 ~ 
Abbreviat ions:  s = 12-1/2, t = 24-1/2, u = 6 - 1/2, v = 8-1/2, w = 2 -  l 

(s~ 

(& 

(& 

(s~k 

SAIO) s s s s s s s s s s s s 
SEI )  t - u  t t t - u  - u  t t t - u  t 
SE2) - v 0 v -- v v 0 0 v -- v v 0 - v 
S T l l  ) 0 v - v  0 - v  v - v  v 0 v - v  0 
ST12  ) v - -v  0 - -v  0 v v 0 - v  0 - -v  v 
ST13 ) - -v  0 v v - -v  0 0 v - -v  - -v  0 v 
Sc~Tzx ) w 0 0 w 0 0 0 0 - w  0 0 - w  
SctTeY ) 0 0 w 0 - w  0 0 - w  0 w 0 0 
Sc~T2z ) 0 w 0 0 0 - w  w 0 0 0 - w  0 
S f lT2x  ) 0 v v 0 v v - v  - v  0 - v  - v  0 
S~T2Y)  v v 0 - -v  0 - -v  - v  0 - v  0 v v 
Sf lT2z  ) v 0 v - -v  - v  0 0 v v - -v  0 - v  
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Since we have to include the pseudo-triangle - R O R ,  we need the standard func- 
tion of the zero vector (O I 0A lo)=  1. With the aid of the Tables 2 and 3 we calcu- 
late the ten possible polyhedral isoscalars : 

- R  0 R ) = 1 / 2 ,  
PIs AI A1 AI 

PIs A1 A 1 A a 

( - R  SR)=6-1/2  ' 
PIs T2 E T 2 

P l s ( - R  S R )  
T 2 o~T 2 T 2 = 8 - 1 / 2 '  

( - R  S R )=l/4, 
PIs A1 c~T2 T2 

PIs T2 f i t  2 A t  = 8  -1 /2 ,  

- R  0 R )=3+1 /2 /2  , 
P I s  T2 A I  7"2 

( - R  S R)=-3+1/2/12, 
PIs T2 A1 r2 

( - R  S R)=l /2 ,  

(-n s R)=o, 
PIs T2 flT 2 T2 

PIs = 1/4, 
T2 c~T2 A1 

( - - R  S R ) __8-1/2 PIs = 
A1 fiT2 1"2 

Finally we have to calculate the expansion coefficients of  spherical harmonics 
(OILl~a~p), (R i I L#~p), and (Sik I L#~p) according to Eqs. (12) and (13) of II. 
We use the spherical harmonics il Y~m(O, ~o) in the convention of [9], Eqs. (2.5.7) 
and (2.5.8). 

Because up to L = 4 the representations of 0(3) contain those of  T a only once, we 
can omit the multiplicity index p in c(Pc~, L#). 

Table 4. Expansion coefficients of spherical harmonics c(Pc~a, L). V /~  for the sets P = (9, .~, and 5 P 

Po~a 

La 0A 1 RA 1 RT 2 SA 1 SE ST 1 Sc~T 2 SIlT z 

1 2 0A 1 
iG 
2e 
2r2 
3A 1 
3G 
3Tt 
4A1 
4E 
4Tt 
4r2 

o -[~/i4d/3 

o - , / ~ / 3  

2i 

- v ~ / 3  

i x / ~ / 9  

- , /~ /4  

-,/3o/2 

.~ 2/~/8 

- , ~ o 7 / 2  

o i,f  

- ,ff~ o 

o i.f~/2 

,/%/3 -./4~/2 o 

With the aid of these tables we calculate all the geometrical factors G(R~ld, 
Rcdl'd', c, L, P) needed for the overlap matrix of  the sixteen s- and p-orbitals. The 
s-orbitals induce A 1 and T2, the p-orbitals (A 1 + T2) x T2=A a +E+ T 1 + 2 T  2. 
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Because of parity considerations the angular momentum quantum number L in 
(8) and (11) takes only values which differ from l+ l' by an even number. 

Table 5. Geometric factors G(R~ld, Rcdl'd, c, L, P ) . . , ~  for s- and p-orbitals at the tetrahedral 
positions R i 

(L, P)= 

R~ld, P~'IW, e (0, O) (0, S) (1, 0) (1, S) (2, 0) (2, S) 

RAIOA p RAIOA1, A 1 1 3 
RTaOA1, RT20A p T 2 1 - 1 
RT2OA,, RTz1T 2, A~ 
RT20A 1, RT21T 2, 7'2 
RT20A p R A I l T  z, T2 
RAllT2,  RA11T 2, T 2 1/.,/3 
RAllT2,  RT21T 2, r 2 0 0 
RT21T2oRT21T2, At 1/~__ -1/x~33 
RT21T2, RT21T 2, E 1/~3 - 1 / 4 3  
RT. IT.,RT. IT.. T, 1/~_ --1/~__ 
R T 21 T2, R T 21 T 2, T 2 1 / ~  - 1/.~/3 

0 -~,/-d 
0 0 
o - i ,~  

0 0 
0 - ~ / 2  
0 - s / ~  
0 - 1/,7~A 
0 s / , ,~4  
0 - 1 / , / ~  

With these geometric factors our program stated by Eq. (11) is fulfilled for the 
tetrahedron. As an example of (11) and Table 5 we write: 

((RT2, nlT2)Tlp I (RT2, n ' IT2)Tlp)= 

(1271)- l/2[rc(nn, 011, 0) - ~(nn, 011, S) + 5.8-1/2n(nn, 21 l, S)] 

This expression is valid for arbitrary types of orbitals. The invariants ~z for the 
special case must be taken from the respective integral formula (8) or (9). 

Because of (16) and (17) there is no problem to include a central atom. The geo- 
metric factors involving the central atom only are: 

G(OA IOA 1, OA IOA 1, A 1, O, O) = G(OA 11T2, 0A 11 T2, T2, 0, 0) = (4=)- 1/2, 

G(OAllT2, 0AllT2, T2, 2, 0 ) = 0  

For the overlap integrals between s.a. orbitals of central atom and ligands one 
needs the factors: 

G(OA IOA 1, 

G(OA 10A 1, 

G(OA 11T 2, RT2OA1, 

G(OA 11 T2, RA 11 T2, 

G(OA 11 Tz, RA 11 T 2, 

G(OAa lT  2, RT21T 2, 

G(OA~IT2, RT21T 2, 

RA lOA1, A1, O, R) =- 2/,,/4~, 

RT21T > A 1, 1, R ) = 2 i / ~  

7" 2, 1, R) = 2i/x/i2~ 

T 2, 0, R ) =  2 / , ~ ,  

T 2, 2, R )=  0 

T2, 0, R)=0, 

T 2 , 2, R ) = -  2/xfi2~ 
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We thus have the overlap integral: 

((OA,, nl r2)r2p I (RT2, n'OA1)T2P) = 2i/xfli-27 rc(nn', 110, R) 

The extension to d-orbitals is straightforward, since we have extended Table 4 to 
L =  4. For an extension to molecules like C(CH3) 4 the sphere of the 12 H atoms 
has to be handled in the same way as the tetrahedron. 

6. Comparison with the Conventional Method 

In the book of Ballhausen and Gray [12] the overlap integrals of s.a. orbitals are 
called group overlaps. We compare the method (GOM) lined out there with ours : 

1) The GOM starts at the level of our Eq. (5) and expresses the invariants first by 
all the integrals (Ainlm] BjnTm'). 

2) Thus GOM needs the numerical values of all the coefficients M, i.e. one has to 
make an explicit calculation of (2). If there is no general formula for M like (7), 
one has to make a list for all special cases. Our method does not need anymore 
the values of M. 

3) In each case one then has to investigate by rotational and mirror operations 
how many and which of the integrals (AiMm I BjnTm') are equal. There is no 
need to do so in our case. These relations are already taken into account in 
Eq. (11). 

4) The remaining integrals (Ainlm[BjnTm') or in the notation of [12] for 
instance S(p,~ L, P~L) depend on the orientation of the p-ligand-orbitals with 
respect to the ligand-ligand direction. There again is no need for such further 
angular considerations in our case, since the invariants ~(nn', Lll', S) in (10) 
and (11) do not depend anymore on angles. The angular, i.e. geometric rela- 
tions are all contained in the factor G. 

5) In O h symmetrs for instance, it is obvious that for equal radial p-functions: 
S(P~L, P~L' ~/2R)=S(P~L, PoL, ~,/-2R), where x/2R means the distance of 
octahedral neighbors. This relation is not induced by symmetry operations 
of the group Oh, and may in other cases not be so easily detectable. Our formula 
(11) includes such relations too. If on the contrary one considers different 
p-orbitals in our formula, one has to express this by different quantum numbers 
n and n' in ~(nn', Lll', S). 

6) If  one wishes to extend the conventional GOM to higher orbital quantum 
numbers, one has to go back to (2), whereas in our method the coefficients W 
and PIs in (15) are the same once and for ever. If there is a sufficient tabulation 
of the isoscalars, the only additional calculation needed concerns some co- 
efficients c(S6d, L#) for higher quantum numbers. The ingredients of formula 
(15) are useful in other molecular calculations too. 

7. Prospect 

We want to consider some general points of the preceding analysis. First of all the 
two-center matrix elements of rotationally invariant operators, especially the 
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kinetic energy operator can be treated in exactly the same manner. Only the 
invariants ~z have to be exchanged. For the kinetic energy we refer to [6], where the 
new invariants are differentially related to ~. This raises the question of the 
potential energy matrix. The matrix elements in this case involve the three-center 
nuclear attraction integrals, the tensor algebraic form of which is also discussed 
in [6]. It is justified to announce the preceding analysis as relevant also for this 
case. In order to give these considerations first a solid, computational foundation, 
a paper on the invariants of multi-center integrals of a current orbital type is in 
preparation. 

A non-quantum mechanical application in the vibrational analysis of polyhedral 
skeletons will be published as Paper III of this series. 
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